Box 1: Yes - Automated machine learning, also referred to as automated ML or AutoML, is the process of automating the time consuming, iterative tasks of machine learning model development. It allows data scientists, analysts, and developers to build ML models with high scale, efficiency, and productivity all while sustaining model quality. Box 2: No - Box 3: Yes - During training, Azure Machine Learning creates a number of pipelines in parallel that try different algorithms and parameters for you. The service iterates through ML algorithms paired with feature selections, where each iteration produces a model with a training score. The higher the score, the better the model is considered to "fit" your data. It will stop once it hits the exit criteria defined in the experiment. Box 4: No - Apply automated ML when you want Azure Machine Learning to train and tune a model for you using the target metric you specify. The label is the column you want to predict. Reference: https://azure.microsoft.com/en-us/services/machine-learning/automatedml/#features